Side effect of mRNA-based COVID-19 vaccination in renal: pros- and cons- in pathophysiological view on renal function

Side effect of mRNA-based COVID-19 vaccination in renal

Penulis

  • Ari Baskoro Department of Internal Medicine, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0003-0939-5128
  • Pranawa Pranawa Department of Internal Medicine, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.59747/smjidisurabaya.v1i1.16

Abstrak

Background: Several cases have been reported where mRNA-based COVID-19 vaccinations correlated with renal disease incidence in the form of minimal change disease (MCD) and immunoglobulin A nephropathy (IgAN) during renal biopsy investigation. However, this renal manifestation is not only detected in COVID-19 vaccination. Renal disease has been detected in other vaccinations such as influenza, pneumococcus, tetanus-diphtheria-poliomyelitis, and hepatitis B. However, the incidence was higher when the COVID-19 vaccination policy was carried out to minimalize the COVID-19's fatal effects and limit its spread. Objective: This viewpoint was written to describe the effect of mRNA COVID-19 vaccines on the renal area based on the scientific points of views in the nephrology field. Discussion: mRNA-based COVID-19 vaccination is carried out by lipid nanoparticles with the main target of activating T-cells as the adaptive immune response and inducing the innate immune system towards the virus via Toll-like receptors (TLR3 and TLR7). This leads to cellular activation and production of IFN type 1. mRNA-based COVID-19 vaccination in healthy adults produces an increment of IgA and IgG antigens. Further increments have been recorded after the second vaccination dose, and CD4+ T cells were stimulated towards Th1 to produce interferon-c (IFN-c), TNF-α, and IL-2. mRNA-based COVID-19 vaccination has been found to activate the immune function and trigger a flare of the disease, while others found that mRNA-based COVID-19 vaccines can re-activate autoantibody-mediated kidney disease. The pathophysiology of acute kidney injury (AKI) might be due to a secondary acute tubular necrosis because of the strong immune response. Conclusion: Although many kidney disease cases were reported during the mass COVID-19 vaccination policy, particularly in mRNA-based COVID-19 vaccination, this type of vaccine has been proven to be effective against COVID-19. There are more advantages to getting the vaccine than not. Moreover, the mechanism of renal disease after mRNA-based vaccination is unclear and debatable.

Referensi

Abbasi, J., 2020. COVID-19 and mRNA vaccines - First large test for a new approach. JAMA - J. Am. Med. Assoc. 324(12):1125–1127. doi: 10.1001/jama.2020.16866.

Aldén, M., Olofsson Falla, F., Yang, D., Barghouth, M., Luan, C., Rasmussen, M., De Marinis, Y., 2022. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr. Issues Mol. Biol. 44(3);1115–1126. doi: 10.3390/cimb44030073.

Augustine, R., S, A., Nayeem, A., Salam, S.A., Augustine, P., Dan, P., Maureira, P., Mraiche, F., Gentile, C., Hansbro, P.M., McClements, L., Hasan, A., 2022. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chem. Biol. Interact. 351:1–13. doi: 10.1016/j.cbi.2021.109738.

Bae, J.H., Choi, S.K., Kim, N.H., Lee, J., Kim, S.G., 2021. Use of renin-angiotensin-aldosterone system inhibitors and severe COVID-19 outcomes in patients with hypertension: A nationwide cohort study. Diabetes Metab. J. 45(3):430-438. doi: 10.4093/dmj.2020.0279.

Buchan, S.A., Chung, H., Brown, K.A., Austin, P.C., Fell, D.B., Gubbay, J.B., Nasreen, S., Schwartz, K.L., Sundaram, M.E., Tadrous, M., Wilson, K., Wilson, S.E., Kwong, J.C., 2022. Estimated Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Netw. Open. 5(9):e2232760. doi: 10.1001/jamanetworkopen.2022.32760

Castelli, J.M., Rearte, A., Olszevicki, S., Voto, C., Del Valle Juarez, M., Pesce, M., Iovane, A.N., Paz, M., Chaparro, M.E., Buyayisqui, M.P., Markiewicz, M.B., Landoni, M., Giovacchini, C.M., Vizzotti, C., 2022. Effectiveness of mRNA-1273, BNT162b2, and BBIBP-CorV vaccines against infection and mortality in children in Argentina, during predominance of delta and omicron covid-19 variants: test negative, case-control study. BMJ. 379:e073070. doi: 10.1136/bmj-2022-073070.

Chandra, P., Roldao, M., Drachenberg, C., Santos, P., Washida, N., Clark, A., Bista, B., Mitsuna, R., Yango, A., 2022. Minimal change disease and COVID-19 vaccination: Four cases and review of literature. Clin. Nephrol. – Case Stud. 10:54–63. doi: 10.5414/CNCS110924.

Copur, S., Berkkan, M., Basile, C., Tuttle, K., Kanbay, M., 2022. Post-acute COVID-19 syndrome and kidney diseases: what do we know? J. Nephrol. 35(3):795–805. doi: 10.1007/s40620-022-01296-y.

Coto, E., Avanzas, P., Gómez, J., 2021. The renin–angiotensin–aldosterone system and coronavirus disease 2019. Eur. Cardiol. Rev. 16:e07. doi: 10.15420/ecr.2020.30.

Fenoglio, R., Lalloni, S., Marchisio, M., Oddone, V., De Simone, E., Del Vecchio, G., Sciascia, S., Roccatello, D., 2022. New Onset Biopsy-Proven Nephropathies after COVID Vaccination. Am. J. Nephrol. 53(4):325-330. doi: 10.1159/000523962

Gressens, S.B., Leftheriotis, G., Dussaule, J.C., Flamant, M., Levy, B.I., Vidal-Petiot, E., 2021. Controversial Roles of the Renin Angiotensin System and Its Modulators During the COVID-19 Pandemic. Front. Physiol. 12:624052. doi: 10.3389/fphys.2021.624052.

Hanna, J., Ingram, A., Shao, T., 2021. Minimal Change Disease After First Dose of Pfizer-BioNTech COVID-19 Vaccine: A Case Report and Review of Minimal Change Disease Related to COVID-19 Vaccine. Can. J. Kidney Heal. Dis. 8:20543581211058271. doi: 10.1177/20543581211058271

Hassler, L., Reyes, F., Sparks, M.A., Welling, P., Batlle, D., 2021. Evidence for and against direct kidney infection by SARS-CoV-2 in patients with COVID-19. Clin. J. Am. Soc. Nephrol. 16(11):1755-1765. doi: 10.2215/CJN.04560421.

Karnadi, E.B., Kusumahadi, T.A., 2021. Why Does Indonesia Have a High Covid-19 Case-Fatality Rate? Jejak 14(2):272–287. doi: 10.15294/jejak.v14i2.29580.

Klimek, L., Novak, N., Cabanillas, B., Jutel, M., Bousquet, J., Akdis, C.A., Immunology, C., Medical, A., Humboldt-universit, P., Universit, F., 2021. Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy. 76(11):3307-3313. doi: 10.1111/all.14794.

Klomjit, N., Alexander, M.P., Fervenza, F.C., Zoghby, Z., Garg, A., Hogan, M.C., Nasr, S.H., Minshar, M.A., Zand, L., 2021. COVID-19 Vaccination and Glomerulonephritis. Kidney Int. Reports 6(12):2969–2978. doi: 10.1016/j.ekir.2021.09.008.

Konishi, T., 2022. Mutations in SARS-CoV-2 are on the increase against the acquired immunity. PLoS One 17(7):e0271305. doi: 10.1371/journal.pone.0271305.

Krishna, A., Singh, P.P., Mazumdar, P., Sharma, A., 2022. Minimal change disease (MCD) following vaccination with ChAdOx1 nCoV‑19 vaccine in a young Indian male: A case report. J. Fam. Med. Prim. Care 11(10):6568-6570. doi: 10.4103/jfmpc.jfmpc_1082_22.

Laurentius, A., Mendel, B., Prakoso, R., 2021. Clinical outcome of renin-angiotensin-aldosterone system blockers in treatment of hypertensive patients with COVID-19: a systematic review and meta-analysis. Egypt. Hear. J. 73(1):13. doi: 10.1186/s43044-021-00135-y.

Li, N.L., Coates, P.T., Rovin, B.H., 2021. COVID-19 vaccination followed by activation of glomerular diseases: does association equal causation? Kidney Int. 100(5):959-965. doi: 10.1016/j.kint.2021.09.002

Li, Y., Rao, M., Xu, G., 2022. New-Onset Acute Kidney Disease Post COVID-19 Vaccination. Vaccines. 10(5):742. doi: 10.3390/vaccines10050742.

Lim, J.H., Kim, M.S., Kim, Y.J., Han, M.H., Jung, H.Y., Choi, J.Y., Cho, J.H., Kim, C.D., Kim, Y.L., Park, S.H., 2022. New-Onset Kidney Diseases after COVID-19 Vaccination: A Case Series. Vaccines. 10(2):302. doi: 10.3390/vaccines10020302.

Luo, H., Li, Xiaolin, Ren, Q., Zhou, Y., Chen, G., Zhao, B., Li, Xuemei, 2022. Acute kidney injury after COVID-19 vaccines: a real-world study. Ren. Fail. 44(1):958-965. doi: 10.1080/0886022X.2022.2081180.

Ma, B.M., Tam, A.R., Chan, K.W., Ma, M.K.M., Hung, I.F.N., Yap, D.Y.H., Chan, T.M., 2022. Immunogenicity and Safety of COVID-19 Vaccines in Patients Receiving Renal Replacement Therapy: A Systematic Review and Meta-Analysis. Front. Med. 9:827859. doi: 10.3389/fmed.2022.827859.

Ma, Y., Xu, G., 2022. New-onset IgA nephropathy following COVID-19 vaccination. QJM An Int. J. Med. 116(1):26-39. doi: 10.1093/qjmed/hcac185.

Nugraha, R.R., Miranda, A.V., Ahmadi, A., Lucero-Prisno, D.E., 2021. Accelerating Indonesian COVID-19 vaccination rollout: a critical task amid the second wave. Trop. Med. Health. 49(1):76. doi: 10.1186/s41182-021-00367-3.

Nunez-Castilla, J., Stebliankin, V., Baral, P., Balbin, C.A., Sobhan, M., Cickovski, T., Mondal, A.M., Narasimhan, G., Chapagain, P., Mathee, K., Siltberg-Liberles, J., 2022. Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 Spike and human proteins. Viruses. 14(7):1415. doi: 10.3390/v14071415.

Oto, O.A., Ozturk, S., Turgutalp, K., Arici, M., Alpay, N., Merhametsiz, O., Sipahi, S., Ogutmen, M.B., Yelken, B., Altiparmak, M.R., Gorgulu, N., Tatar, E., Ozkan, O., Ayar, Y., Aydin, Z., Dheir, H., Ozkok, A., Safak, S., Demir, M.E., Odabas, A.R., Tokgoz, B., Tonbul, H.Z., Sezer, S., Ates, K., Yildiz, A., 2021. Predicting the outcome of COVID-19 infection in kidney transplant recipients. BMC Nephrol. 22(1):100. doi: 10.1186/s12882-021-02299-w.

Pacheco, I.C.R., Costa, D.M. do N., Sousa, D.S., Salgado Filho, N., Silva, G.E.B., Neves, P.D.M. de M., 2022. Kidney injury associated with COVID-19 infection and vaccine: A narrative review. Front. Med. 9:956158. doi: 10.3389/fmed.2022.956158.

Padín-González, E., Lancaster, P., Bottini, M., Gasco, P., Tran, L., Fadeel, B., Wilkins, T., Monopoli, M.P., 2022. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front. Bioeng. Biotechnol. 10, 1–16. doi: 10.3389/fbioe.2022.882363.

Palermo, E., Carlo, D. Di, Sgarbanti, M., Hiscott, J., 2021. Type I Interferons in COVID-19 Pathogenesis. Biology (Basel). 10(9):829. doi: 10.3390/biology10090829.

Park, J.W., Lagniton, P.N.P., Liu, Y., Xu, R.H., 2021. mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci. 17(6):1446-1460. doi: 10.7150/ijbs.59233.

Patel, C., Shah, H.H., 2019. Vaccine-associated kidney diseases: A narrative review of the literature. Saudi J Kidney Dis Transpl. 30(5):1002-1009. doi: 10.4103/1319-2442.270254.

Pramod, S., Kheetan, M., Ogu, I., Alsanani, A., Khitan, Z., 2021. Viral Nephropathies, Adding SARS-CoV-2 to the List. Int J Nephrol Renovasc Dis. 14:157-164. doi: 10.2147/IJNRD.S303080.

Ritter, A., Helmchen, B., Gaspert, A., Bleisch, J., Fritschi, B., Buchkremer, F., Damm, S., Schmid, N., Schachtner, T., Seeger, H., 2022. Clinical spectrum of gross haematuria following SARS-CoV-2 vaccination with mRNA vaccines. Clin. Kidney J. 15(5):961-973. doi: 10.1093/ckj/sfab284.

Shah, V.K., Firmal, P., Alam, A., Ganguly, D., Chattopadhyay, S., 2020. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front. Immunol. 11:1949. doi: 10.3389/fimmu.2020.01949.

Sharma, P., Uppal, N.N., Wanchoo, R., Shah, H.H., Yang, Y., Parikh, R., Khanin, Y., Madireddy, V., Larsen, C.P., Jhaveri, K.D., Bijol, V., 2020. COVID-19–Associated Kidney Injury: A Case Series of Kidney Biopsy Findings. J. Am. Soc. Nephrol. 31(9):1948-1958. doi: 10.1681/ASN.2020050699.

Soliman, N.A., 2021. COVID-19 infection and the kidneys: learning the lesson. J. Infect. Public Health. 14(7):922-926. doi: 10.1016/j.jiph.2021.05.010.

Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I., Kayhan, S., 2020. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol. 39(7):2085-2094. doi: 10.1007/s10067-020-05190-5.

Strzyz, P., 2021. Forcing MT glutamylation. Nat. Rev. Mol. Cell Biol. 22(8):509. doi: 10.1038/s41580-021-00391-5.

Su, H., Yang, M., Wan, C., Yi, L.X., Tang, F., Zhu, H.Y., Yi, F., Yang, H.C., Fogo, A.B., Nie, X., Zhang, C., 2020. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98(1):219-227. doi: 10.1016/j.kint.2020.04.003.

Tan, C.Y., Chiew, C.J., Lee, V.J., Ong, B., Lye, D.C., Tan, K.B., 2022. Comparative effectiveness of 3 or 4 doses of mRNA and inactivated whole-virus vaccines against COVID-19 infection, hospitalization and severe outcomes among elderly in Singapore. Lancet Reg. Heal. - West. Pacific. 29:100654. doi: 10.1016/j.lanwpc.2022.100654.

Tang, P., Hasan, M.R., Chemaitelly, H., Yassine, H.M., Benslimane, F.M., Al Khatib, H.A., AlMukdad, S., Coyle, P., Ayoub, H.H., Al Kanaani, Z., Al Kuwari, E., Jeremijenko, A., Kaleeckal, A.H., Latif, A.N., Shaik, R.M., Abdul Rahim, H.F., Nasrallah, G.K., Al Kuwari, M.G., Al Romaihi, H.E., Butt, A.A., Al-Thani, M.H., Al Khal, A., Bertollini, R., Abu-Raddad, L.J., 2021. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat. Med. 27(12):2136-2143. doi: 10.1038/s41591-021-01583-4.

Teijaro, J.R., 2016. Type I interferons in viral control and immune regulation. Curr. Opin. Virol. 16:31-40. doi: 10.1016/j.coviro.2016.01.001.

Teijaro, J.R., Farber, D.L., 2021. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 21, 195–197. doi: 10.1038/s41577-021-00526-x.

Tirelli, C., De Amici, M., Albrici, C., Mira, S., Nalesso, G., Re, B., Corsico, A.G., Mondoni, M., Centanni, S., 2023. Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. Biology (Basel). 12(2):177. doi: 10.3390/biology12020177.

Torjesen, I., 2021. Covid-19: Infection increases the risk of kidney disease even in mild cases, finds study. BMJ. 374:n2189. doi: 10.1136/bmj.n2189

Trougakos, I.P., Terpos, E., Alexopoulos, H., Politou, M., Paraskevis, D., Scorilas, A., Kastritis, E., Andreakos, E., Dimopoulos, M.A., 2022. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol. Med. 28(7):542-554. doi: 10.1016/j.molmed.2022.04.007

Tseng, H.F., Ackerson, B.K., Luo, Y., Sy, L.S., Talarico, C.A., Tian, Y., Bruxvoort, K.J., Tubert, J.E., Florea, A., Ku, J.H., Lee, G.S., Choi, S.K., Takhar, H.S., Aragones, M., Qian, L., 2022. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 28(5):1063-1071. doi: 10.1038/s41591-022-01753-y.

Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., Moch, H., 2020. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5.

Windpessl, M., Bruchfeld, A., Anders, H.J., Kramer, H., Waldman, M., Renia, L., Ng, L.F.P., Xing, Z., Kronbichler, A., 2021. COVID-19 vaccines and kidney disease. Nat. Rev. Nephrol. 10(2):302. doi: 10.3390/vaccines10020302.

Zhang, J., Cao, J., Ye, Q., 2022. Renal Side Effects of COVID-19 Vaccination. Vaccines 10(11):1783. doi: 10.3390/vaccines10111783.

Diterbitkan

2023-05-19